Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Methane (CH4) emissions from wetland ecosystems are controlled by redox conditions in the soil, which are currently underrepresented in Earth system models. Plant-mediated radial oxygen loss (ROL) can increase soil O2availability, affect local redox conditions, and cause heterogeneous distribution of redox-sensitive chemical species at the root scale, which would affect CH4emissions integrated over larger scales. In this study, we used a subsurface geochemical simulator (PFLOTRAN) to quantify the effects of incorporating either spatially homogeneous ROL or more complex heterogeneous ROL on model predictions of porewater solute concentration depth profiles (dissolved organic carbon, methane, sulfate, sulfide) and column integrated CH4fluxes for a tidal coastal wetland. From the heterogeneous ROL simulation, we obtained 18% higher column averaged CH4concentration at the rooting zone but 5% lower total CH4flux compared to simulations of the homogeneous ROL or without ROL. This difference is because lower CH4concentrations occurred in the same rhizosphere volume that was directly connected with plant-mediated transport of CH4from the rooting zone to the atmosphere. Sensitivity analysis indicated that the impacts of heterogeneous ROL on model predictions of porewater oxygen and sulfide concentrations will be more important under conditions of higher ROL fluxes or more heterogeneous root distribution (lower root densities). Despite the small impact on predicted CH4emissions, the simulated ROL drastically reduced porewater concentrations of sulfide, an effective phytotoxin, indicating that incorporating ROL combined with sulfur cycling into ecosystem models could potentially improve predictions of plant productivity in coastal wetland ecosystems.more » « less
-
Integrating Tide‐Driven Wetland Soil Redox and Biogeochemical Interactions Into a Land Surface ModelAbstract Redox processes, aqueous and solid‐phase chemistry, and pH dynamics are key drivers of subsurface biogeochemical cycling and methanogenesis in terrestrial and wetland ecosystems but are typically not included in terrestrial carbon cycle models. These omissions may introduce errors when simulating systems where redox interactions and pH fluctuations are important, such as wetlands where saturation of soils can produce anoxic conditions and coastal systems where sulfate inputs from seawater can influence biogeochemistry. Integrating cycling of redox‐sensitive elements could therefore allow models to better represent key elements of carbon cycling and greenhouse gas production. We describe a model framework that couples the Energy Exascale Earth System Model (E3SM) Land Model (ELM) with PFLOTRAN biogeochemistry, allowing geochemical processes and redox interactions to be integrated with land surface model simulations. We implemented a reaction network including aerobic decomposition, fermentation, sulfate reduction, sulfide oxidation, methanogenesis, and methanotrophy as well as pH dynamics along with iron oxide and iron sulfide mineral precipitation and dissolution. We simulated biogeochemical cycling in tidal wetlands subject to either saltwater or freshwater inputs driven by tidal hydrological dynamics. In simulations with saltwater tidal inputs, sulfate reduction led to accumulation of sulfide, higher dissolved inorganic carbon concentrations, lower dissolved organic carbon concentrations, and lower methane emissions than simulations with freshwater tidal inputs. Model simulations compared well with measured porewater concentrations and surface gas emissions from coastal wetlands in the Northeastern United States. These results demonstrate how simulating geochemical reaction networks can improve land surface model simulations of subsurface biogeochemistry and carbon cycling.more » « less
-
Abstract Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon.more » « less
-
Abstract The storage and cycling of soil organic carbon (SOC) are governed by multiple co-varying factors, including climate, plant productivity, edaphic properties, and disturbance history. Yet, it remains unclear which of these factors are the dominant predictors of observed SOC stocks, globally and within biomes, and how the role of these predictors varies between observations and process-based models. Here we use global observations and an ensemble of soil biogeochemical models to quantify the emergent importance of key state factors – namely, mean annual temperature, net primary productivity, and soil mineralogy – in explaining biome- to global-scale variation in SOC stocks. We use a machine-learning approach to disentangle the role of covariates and elucidate individual relationships with SOC, without imposing expected relationshipsa priori. While we observe qualitatively similar relationships between SOC and covariates in observations and models, the magnitude and degree of non-linearity vary substantially among the models and observations. Models appear to overemphasize the importance of temperature and primary productivity (especially in forests and herbaceous biomes, respectively), while observations suggest a greater relative importance of soil minerals. This mismatch is also evident globally. However, we observe agreement between observations and model outputs in select individual biomes – namely, temperate deciduous forests and grasslands, which both show stronger relationships of SOC stocks with temperature and productivity, respectively. This approach highlights biomes with the largest uncertainty and mismatch with observations for targeted model improvements. Understanding the role of dominant SOC controls, and the discrepancies between models and observations, globally and across biomes, is essential for improving and validating process representations in soil and ecosystem models for projections under novel future conditions.more » « less
-
null (Ed.)Abstract. Data collected from research networks presentopportunities to test theories and develop models about factors responsiblefor the long-term persistence and vulnerability of soil organic matter(SOM). Synthesizing datasets collected by different research networkspresents opportunities to expand the ecological gradients and scientificbreadth of information available for inquiry. Synthesizing these data ischallenging, especially considering the legacy of soil data that havealready been collected and an expansion of new network science initiatives.To facilitate this effort, here we present the SOils DAta Harmonizationdatabase (SoDaH; https://lter.github.io/som-website, last access: 22 December 2020), a flexible database designed to harmonize diverse SOM datasets frommultiple research networks. SoDaH is built on several network scienceefforts in the United States, but the tools built for SoDaH aim to providean open-access resource to facilitate synthesis of soil carbon data.Moreover, SoDaH allows for individual locations to contribute results fromexperimental manipulations, repeated measurements from long-term studies,and local- to regional-scale gradients across ecosystems or landscapes.Finally, we also provide data visualization and analysis tools that can beused to query and analyze the aggregated database. The SoDaH v1.0 dataset isarchived and availableat https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 (Wieder et al., 2020).more » « less
-
This SOils DAta Harmonization (SoDaH) database is designed to bring together soil carbon data from diverse research networks into a harmonized dataset that can be used for synthesis activities and model development. The research network sources for SoDaH span different biomes and climates, encompass multiple ecosystem types, and have collected data across a range of spatial, temporal, and depth gradients. The rich data sets assembled in SoDaH consist of observations from monitoring efforts and long-term ecological experiments. The SoDaH database also incorporates related environmental covariate data pertaining to climate, vegetation, soil chemistry, and soil physical properties. The data are harmonized and aggregated using open-source code that enables a scripted, repeatable approach for soil data synthesis.more » « less
An official website of the United States government
